The Energy and Minerals Section at the Kentucky Geological Survey (KGS) is engaged in research and service that is traditional in many ways, but that is taking advantage of new technologies and concepts to meet the challenges of the increasing importance of environmental issues and regulations. Energy research and service is divided into two major program areas: coal resources and oil and natural gas resources. In addition, the group maintains databases related to these resources.

COAL RESOURCES

The coal resources program has two main goals: to assess the occurrence and thickness of the remaining coal resource and to assess the quality of the various coals that make up that resource. KGS has been involved in various types of coal-resource assessment. Much of this work has been with the cooperation and funding of the U.S. Geological Survey. The results of recent coal availability studies of selected test areas on detailed base maps have shown that land-use restrictions have a negligible regional impact on mining in Kentucky. Technological and economic restrictions, such as thin coal and the depth of the coal, are more significant; in some test areas, they restrict up to 50 percent of the resource. Resource depletion is also a significant factor for a number of the important coal beds. To that end, the major mineable coal seams of the state are being digitally mapped and assessed as part of the National Coal Resource Assessment, a program funded by the U.S. Geological Survey.

An understanding of coal quality is important not only in determining its uses, but increasingly in assessing its compliance with existing and pending environmental regulations. Title III Federal Clean Air Act Amendments of 1990 limit the emission of 189 substances that are considered hazardous air pollutants (HAPs). Fifteen of these occur in coal naturally as trace elements. Research is being carried out to determine how geologic factors affect coal quality relative to these specific trace elements. Such geologic models help identify areas and coals with lower amounts of specific HAPs. In addition, regulations requiring further reduction of NOx emissions have resulted in selective catalytic reduction (SCR) units and retrofits being installed in Ohio Valley power plants. Coals with elevated levels of arsenic and selenium can negatively affect these units; therefore understanding the geologic controls on these elements can be critical. The restrictions on sulfur dioxide mandated by Title IV of the Clean Air Act Amendments of 1990 have led some utilities to selectively purchase and burn coals substantially below the regulatory limits in order to exceed the act’s requirements, and thereby accumulate credits for sulfur dioxide emissions in the future. This practice could affect the long-term availability of low-sulfur, high-value coal for other uses, such as feedstock for metallurgical coke. Some of KGS’s coal-quality work is being funded by the U.S. Geological Survey.

Knowledge of the availability and quality of coal will continue to be important.
vital to Kentucky, as the state requires more resources for current and future power generating plants (Figure 1). New coal utilization technologies have the potential to drastically change the Kentucky resource picture. Five of the new facilities that will use these new technologies are currently in the permitting stage. Four will burn waste or low-grade coal in combination with other fuel types and one will use a combination of coal and municipal garbage for gasification feedstock.

Traditional geologic studies of coal-bearing rocks are still important. Investigations of geologic obstacles in Kentucky’s underground mines will give mining engineers a better understanding of specific types of obstacles and geologic hazards for future mining. The results of these studies are also extrapolated to other coal fields where data are not so readily available. The state’s spectacular outcrops of coal-bearing rocks allow detailed studies of geologic relationships not easily seen in other coal fields. Some of the rock associations visible in the Eastern Kentucky Coal Field are also being used to predict the nature and occurrence of hydrocarbon reservoirs and traps in oil fields around the world, including the Hibernia Field in offshore Newfoundland.

Coalbed methane, currently being produced in Alabama, New Mexico, and several other states, may also play a future role as an important energy resource in Kentucky. Several studies are pending to better assess its potential in Kentucky (Figure 2). The collection of high quality methane desorption data will be critical if companies are to look to Kentucky as a potential coalbed methane producing region.

OIL AND NATURAL GAS RESOURCES

KGS provides basic studies that will aid in the exploration and production of oil and gas within the Commonwealth and provide means that will assist in mitigating the environmental impact of consuming hydrocarbons.

Although most of the oil and gas in Kentucky is being produced from relatively shallow reservoirs, some deeper oil and gas reservoirs may be important for future exploration efforts. Several of our studies have focused on this deep hydrocarbon potential.

One such study is funded by the Rome Trough Consortium, made up of oil and gas industry representatives and the U.S. Department of Energy. The study will provide basic stratigraphic and geochemical information to be used in the exploration of oil and gas reservoirs in the Rome Trough of eastern Kentucky and West Virginia. The data generated by the project will be made public in two years. This research has identified Cambrian shales in Kentucky and West Virginia as hydrocarbon source rocks, the first source rocks of this age and depth to be identified in the Appalachians. This suggests that the source of Cambrian gas and oil is from within the basin itself. In addition, a graduate student at the University of Kentucky, sponsored by the KGS is using seismic reflection data to explain the structural development of the trough. Current results suggest that this Cambrian rift basin was affected by later contraction, which formed anticlines that may be important hydrocarbon traps (Figure 3).

Another study was recently initiated as the result of important gas discoveries in Ordovician Trenton-Black River Formations of New York and West Virginia. Trenton-Black River (Lexington Limestone-High Bridge Group) rocks exposed in the Bluegrass Region of central Kentucky are being investigated to give us a better understanding of the nature of hydrothermal dolomites that are similar to those in oil and gas fields in other parts of the Appalachians. In fact, some of the dolomites exposed in the Bluegrass contain mineralized vugs (small chambers or openings in the rock) filled with oil. The study of the stratigraphic, structural, geochemical, and seismic characteristics of these exposed rocks will aid exploration efforts, not only in Kentucky, but also throughout eastern North America.

The New York State Energy Research and Development Authority, the U.S. Department of Energy, and industry are funding the study.

For the past 13 years, KGS has been studying the Proterozoic rocks of Kentucky. Drilling below the base of the Paleozoic section in Kentucky and adjacent Indiana and Ohio has revealed that sedimentary rocks are commonly present in the Proterozoic. Seismic reflection data available to KGS have shown that layered reflectors characterize the drilled sedimentary intervals as well as the section beneath them. This suggests that oil and gas accumulations are possible many kilometers below the base of the Paleozoic. Already, one well has encountered a porous quartzarenite at about 8,100 feet in the Proterozoic that has reportedly blown “gas.” Such possible deep potential needs to be examined, especially in light of projected increased demand for the United States of up to 30 trillion cubic feet of gas per year in the next decade or two.

In addition to exploration research, we are conducting research on the environmental impact of burning fossil fuels. KGS was instrumental in forging a consortium of state geological surveys to develop a database for assessing the regional potential for carbon dioxide sequestration. The consortium is made up of the geological surveys of Illinois, Indiana, Kansas, Kentucky, and Ohio, and the project is the Midcontinent Interactive Digital Carbon Atlas and Relational DataBase (MIDCARB). Increasing concern about greenhouse gases and their possible

Figure 2. Estimated coalbed methane resources in Kentucky in billions of cubic feet (BCF) based on USGS 1995 National Assessment. Light areas represent the counties with potential coalbed methane.
An associated benefit of this work may be the enhanced recovery of oil and gas from some of these potential carbon sinks. The study will use geographic information system (GIS) technology, and the resulting atlas and database will be critical to planners of future CO₂ disposal efforts. The MIDCARB study may serve as a prototype for future national programs.

The similarity in reservoir characteristics of coal and organic-rich, black gas shales has led KGS to begin a study of the Devonian black shales as a potential important CO₂ sink (Figure 4). The effort, sponsored by the U.S. Department of Energy, represents basic research in this field and has not been previously attempted. It may be possible for CO₂ to displace methane in the shale so that the methane may be produced as an energy resource, thereby achieving a double benefit. Theoretical calculations suggest that more than 1,270 billion tons of CO₂ could be stored in Kentucky Devonian shales, or about 12,000 times the 1999 Kentucky CO₂ emissions. If this concept is valid, large areas of North America could use this method of carbon sequestration and natural-gas enhanced production. Similar funding for studies of Kentucky coals as potential CO₂ sinks and sources of natural gas is also being sought.

Jim Drahovzal is the head of the Energy and Minerals section at KGS. He joined the KGS in 1989. His management responsibilities include oil, natural gas, coal and minerals programs. He can be reached at drahovzal@kgs.mm.uky.edu

Figure 3. The Rockcastle Uplift (left) thrust over the Rome Trough (right). The Rome Trough formed by Cambrian extension. Thrust faulting created the uplift and the faulted anticline (A) in the trough. The faulted anticline may be an undrilled oil and gas target. Deep structures like this will need to be explored if the U.S. is to adequately supply future increasing natural gas consumption.

Figure 4. Devonian shales underlie the colored areas on this map of Kentucky. The medium gray area represents areas where the shales are relatively thin and shallow. The light gray represents those areas where the shales are greater than 100 feet thick and more than 1000 feet deep—potentially the best areas for carbon dioxide sequestration. The dark gray areas represent gas fields in the Devonian shales (the large dark gray area on the east is the Big Sandy field, a giant gas field).
THE UNIVERSITY OF KENTUCKY CENTER FOR APPLIED ENERGY RESEARCH celebrated its 25th Anniversary with a memorable dinner on October 8th. About 150 guests joined in sharing in some of the Center’s historical highlights. United States Senator Wendell Ford took us back to the founding years and Advisory Board Co-chair David Drake supplemented Senator’s talk with anecdotes illustrating the development of CAER. Our social committee presented an excellent, humorous visual review of historical highlights — especially of the people involved. Due recognition was given to staff members who have been with CAER since its inception:

Burt Davis
Clean Fuels and Chemicals
Theresa Wiley
Library
John Hiett
Environmental and Coal Technologies
Tom Robl
Environmental and Coal Technologies
Gerald Thomas
Analytical Laboratory
Danny Turner
Carbon Materials

Awards were also made to CAER Advisory Board members who have been on the Board since its formation:

Frank Burke
CONSOL Energy, Inc. (Board Chair)
David Drake
East Kentucky Power Cooperative
John Larsen
Lehigh University
Robert Addington
EnviRes LLC
Bernie Lee
Gas Technology Institute (retired)

The following day CAER hosted a Kentucky Energy Policy Summit with about 80 attendees. Seven speakers of national standing made presentations on various subjects relating to energy policy. The content of these talks may be viewed at: http://www.caer.uky.edu/special/summit/summit.html.

The Advisory Board also met on October 8th with CAER’s strategy receiving special attention. The board endorsed the proposed path forward to strengthen activities in all three main thrust areas of CAER, namely Environmental and Coal Technologies, Carbon Materials, and Clean Fuels and Chemicals. In each area there are challenging new actions underway.

The Environmental and Coal Technologies group has strengthened its relationship with industry to the extent that a major award for utilization of ash-related products is in the process of being finalized. This involves Charah Environmental, Louisville Gas & Electric and the U.S. Department of Energy.

In Carbon Materials, a strategic investment was made to renovate an old compression building to house a new furnace system for the continuous production of CAER’s unique aligned multiwalled nanotubes. The facility has just been completed, and operation is due to being in early January.

Clean Fuels and Chemicals is using its Fischer-Tropsch expertise to also extend into related areas and will continue to be involved in R & D for a number of significant industrial enterprises. The work covers catalysis, catalyst separation from slurry, and tracer experiments for studying selectivities and mechanisms. Preliminary work regarding hydrogen and fuel cell catalysis was started. To enhance the expertise in other areas of catalysis, the CAER is proud to announce the appointment of Dr. Mark Crocker to the Clean Fuels and Chemicals group. He was most recently the R&D Manager with a metals resources research technology company, The OM Group, where he worked in the Automotive Catalyst Division. He graduated from the University of Bristol, United Kingdom and was with Shell Research and Technology in Amsterdam for twelve years. He will begin by expanding our capability in the area of environmental catalysis.

Besides these specific research actions, CAER is very involved in the Kentucky energy policy development; a UK Task Force to define opportunities across the university for energy and the environment; and in a
recently established Kentucky Energy and Environment Consortium, which is part of the Kentucky New Economy Initiative.

The celebrations mentioned above were milestones, giving opportunity to reminisce, take stock, and look forward. The immediate future holds challenging opportunities, taxing times, and limited funding. However, one learns from history to avoid repeating it. The historical path of the laboratory tells us that with the dedicated and enthusiastic staff at CAER, the future looks bright. The expectations are high, but so is the intent to perform. Our new activities illustrate the dynamic approach we are following to ensure that CAER continues to be significant, relevant, and of great value to its stakeholders. Those stakeholders have different expectations, but with a balanced portfolio of high quality research leading to technologies being implemented, the Commonwealth, UK, industry and our staff can have the satisfaction of being actively involved in these pursuits. Our track record is impressive, but the future requires even more from us. We are ready to meet the challenge.

Ari Geertsema
Director
Energeia is published six times a year by the University of Kentucky’s Center for Applied Energy Research (CAER). The publication features aspects of energy resource development and environmentally related topics. Subscriptions are free and may be requested as follows. Marybeth McAlister, Editor of Energeia, CAER, 2540 Research Park Drive, University of Kentucky, Lexington, KY 40511-8410, (859) 257-0224, FAX: (859)-257-0220, e-mail: mcalister@caer.uky.edu. Current and past issues of Energeia may be viewed on the CAER Web Page at www.caer.uky.edu. Copyright © 2002, University of Kentucky.