University of Kentucky CAER Home

IEACCC/92

Air Pollution Control Technologies and their Interactions

AUTHOR: Hermine Nalbandian
DATE: November 2004
PAGES: 75

ABSTRACT:
Emission standards to control air pollution and protect populations from the adverse impact of coal-based power generation have been introduced and adopted in many countries. A large number of coal-fired power stations have been fitted/retrofitted with dedicated air pollutant control technologies. Experience shows that these technologies can have complex interactions and can impact each other as well as balance of plant, positively and/or negatively. Particulate matter (PM) is usually captured with electrostatic precipitators (ESPs) and fabric filters (FF). These technologies are efficient and reliable but their performance may be affected by modifying operating conditions and introducing primary measures for NOx reduction. Flue gas desulphurisation (FGD) systems for SO2 control have been installed in many facilities with the most popular technology being the wet limestone/gypsum scrubber.

FGD use can decrease particulate matter and mercury emissions which is a major issue in the USA, cause an increase in carbon dioxide emissions, and in solids by-product. Primary measures such as low NOx burners (LNBs) and overfire air (OFA) minimise NOx formation but can increase carbon in ash (CIA) which can cause problems with fly ash sales but may also improve mercury capture. Reducing NOx emissions with selective catalytic reduction (SCR) can result in a decrease in particulate matter, an increase in SO3 emissions and trace increase in NH3. This can cause fouling and loss of performance of the air preheater, due to the formation of ammonium sulphates. One way of alleviating this is improved soot-blowing and other cleaning capabilities. This report studies these and other interactions between existing air pollution control technologies in pulverised coal fired power plants.