UK CAER Current News

The Center for Applied Energy Research (CAER) is one of the University of Kentucky's multidisciplinary research centers. Its energy research provides a focal point for environmental, renewable and fossil fuels research in Kentucky.

Video Showcases UK CAER STEM Pipeline Efforts

clock April 4, 2016 15:58 by author Dave Melanson

Much has been reported about the lack of students in the science, technology, engineering and mathematics (STEM) pipeline across Kentucky and the nation.

Changing those statistics has been an on-going national challenge – a challenge in which UK Center for Applied Energy Research (CAER) has taken a leadership role.

The following video showcases how the UK CAER 101 program is helping to inspire the next generation of scientists at Yates, Cassidy and Russell Cave Elementary Schools here in Fayette County.

Helping to inspire those elementary students are current UK student participants in UK’s Broadening Participation in Engineering program, which is sponsored by the National Science Foundation. UK’s BPE program is a collaboration between UK CAER and UK’s College of Engineering and seeks to inspire traditionally under-represented students to pursue leadership opportunities in STEM fields.

“Mentoring opportunities are available to incoming African American, Hispanic or Native American engineering students at both the undergraduate and graduate level,” said Eduardo Santillan-Jimenez, a research scientist at UK CAER, and Director of the BPE Mentoring program. “The BPE program has really allowed UK to engage in a unique mentoring opportunity for UK scientists. It also has allowed our students an opportunity to help build a pipeline of STEM learners in our community.”

UK Now Story.



UK CAER High School Students Wins Prestigious Army Award at Ky State Science Fair

clock April 1, 2016 13:26 by author Alice
Ashley Liu, a student from the Paul Laurence Dunbar High School, won the prestigious Army Award at the Kentucky State Science Fair, March 2016. The research project was based upon her studies on water treatment technology completed at the Center for Applied Energy Research's Power Generation research group. The center is located at the University of Kentucky.



Ashley Liu presented a poster at the Kentucky State Science Fair 2016 at the Eastern Kentucky University.


UK CAER's Tekecrete Featured at First Defense Expo

clock April 1, 2016 12:55 by author Alice

A new technology developed at the University of Kentucky Center for Applied Energy Research and Minova's North American headquarters in Georgetown, Kentucky was exhibited at the FDX 2016 First Defense Expo in Louisville in mid-March 2016. CAER and Minova scientists reached out to the first responder community by discussing Tekcrete Fast. This product/process allows a fiber-reinforced, high-strength, ultra-rapid setting concrete to be applied for almost immediate stabilization of damaged buildings and other damaged concrete infrastructure. The process can be sent into the location immediately and be used at a safe distance.

The Tekcrete Fast technology used the construction technique called shotcrete and is applied at high velocity that also facilitates adherence to various construction surfaces. A slightly different formulation, Tekcrete Fast M, is used in underground applications to almost instantly stabilize dangerous mining conditions, contributing to mine safety.

The research and joint patent leading to the Minova license came about when UK CAER partnered with Minova on a project for the National Institute of Hometown Security (NIHS), located in Somerset, Kentucky.



Ohio Valley Organic Petrographers Meeting

clock April 1, 2016 11:20 by author Alice


Organic petrographers from the Ohio Valley area representing various universities met on March 31, 2016 at the Kentucky Geological Survey in Henderson, Kentucky.

Dr. Jim Hower of the UK Center for Applied Energy Research (center, back row) participated in the meeting to discuss various organic petrology of coals and carbonaceous shales topics.


UK CAER Reaches Out to Math "Athletes"

clock April 1, 2016 10:52 by author Alice

 

Biofuels is the name of the game! Three University of Kentucky Center for Applied Energy Research staffers - Scientist, Dr. Jack Groppo; Engineer, Ms. Shiela Medina; and Ms. Alice Marksberry - participated in the UK hosted 2016 MathCounts competition. On a Friday night in March, nearly 200 Mathcounts winners from middle schools in counties throughout the Commonwealth participated in fun science experiments with UK faculty, staff and students.

 

The UK CAER hosted an educational stop that featured the Biofuels Game - a board game created by CAER scientist Dr. Eduardo Santillian-Jimenez. The game reflects decisions made by the students that must compare and contrast the pathway of creating a gasoline/diesel product from either crude petroleum or biomass. Students must consider how to create the end product via economical and environmentally sound decision-making processes.

 

Mathcounts is a national enrichment, coaching and competition program that promotes middle school math achievement through grassroots involvement.


Center Collaborates with UK Mining Engineering on Rare Earth Elements Research

clock March 15, 2016 08:56 by author David Melanson

University of Kentucky Center for Applied Energy Research scientists Jack Groppo and Jim Hower are collaborating with Rick Honaker, professor and chair of the UK Department of Mining Engineering, to develop a mobile pilot-plant facility for the recovery of rare earth elements from coal.

The research team received $1 million from the U.S. Department of Energy (DOE) National Energy Technology Laboratory. The team includes collaborators at Virginia Tech and West Virginia University and will develop and test a mobile processing facility that can efficiently recover the rare earth elements present in coal and coal byproducts in an environmentally friendly manner.

"Previous research conducted by UK scientists and others have found that the critical materials needed for renewable energy technologies, such as cell phones and other electronics, are found in coal and coal byproducts at concentrations that may be economical to recover," Dr. Honaker said.

Rare earth elements, or REEs, are a series of chemical elements found in the Earth’s crust. Due to their unique chemical properties, REEs have become essential components of many technologies spanning a range of applications including electronics, computer and communication systems, transportation, health care and national defense. The demand, cost and availability of REEs has grown significantly over recent years stimulating an emphasis on economically feasible approaches for REE recovery.

The U.S. has 10.9 million tons of rare earth resources in coal deposits located in just five western and four eastern states, including Kentucky, West Virginia and Virginia, according to the U.S. Geological Survey Coal Quality Database.

"If advanced separation technologies become available, the resource base will increase substantially," Dr. Honaker said.

With those technologies, the coal industry could potentially produce approximately 40,000 tons of REEs annually, which is more than twice the amount consumed in the U.S.

As Chairman of the House Appropriations Committee, U.S. Rep. Hal Rogers (KY-05) supported funding for REE recovery projects in the federal budget for fiscal year 2016.

“Our coal-producing states are working diligently to recover from the devastating loss of coal mining jobs in today’s economy. In fact, Kentucky alone has suffered the loss of nearly 11,000 coal mining jobs since 2009. Experimental projects, like UK’s mobile REE recovery plant, could save and create new coal-related jobs and opportunities in eastern Kentucky,” said Congressman Rogers. “I applaud Professor Honaker and the vision of UK’s leaders to find new applications for coal and coal byproducts for the development of everyday technologies, such as smart phones, computers and rechargeable batteries. This effort to find more uses for our country’s most plentiful resource could put many people back to work in the coalfields.”

This project is one of only 10 projects awarded and is the only one that is focused on physical concentration methods as a means for recovering REE directly from the coal sources rather than from a coal combustion byproduct. UK CAER received funding on three of 10 NETL projects.



Catalyst Group Publishes Book

clock March 11, 2016 12:59 by author David Melanson

World-renowned UK Center for Applied Energy Research Fischer-Tropsch catalysis research – led by CAER’s Burt Davis – has been published in a new book entitled “Fischer-Tropsch Synthesis, Catalysts, and Catalysis: Advances and Applications.” The book is now available for sale by CRC Press.

The book is a collection of proceedings and some invited papers from the International Symposium on Fischer-Tropsch Chemistry and Catalysis, which was held as part of the 248th American Chemical Society (ACS) National Meeting & Exposition. That meeting was held in August 2014 in San Francisco.

Dr. Davis, an international leader in Fischer-Tropsch synthesis, and direct coal liquefaction at CAER, served as one of the book’s editors, along with colleague Mario L. Occelli.

In addition to Dr. Davis’ contributions to this book, many other staff members and former staff of the Center’s Catalysts Laboratory were published including: Muthu Kumaran Gnanamani, Uschi M. Graham, Shelley D. Hopps, Gary Jacobs, Wenping Ma, Patricia M. Patterson, Venkat Ramana Rao Pendyala, Wilson D. Shafer, Dennis E. Sparks, and Gerald A. Thomas.  Moreover, the book highlights the work of many UK CAER students and former students, including Adam C. Crawford, Victor Gloriot, Nicolas A. Hughes, Michela Martinelli, Maria A. Morales, Chase P. Moran, Jean-Samuel Poirier, Damarcus D. Smiley, and Sarah S. Suggs.

Collaborations with UK CAER included Gabriela Alvez (Chevron-Phillips Chemical Co. LP), Dragomir B. Bukur (Texas A&M University at Qatar), Hussein H. Hamdeh (Wichita State University Department of Physics), Xianghong Hao (Chevron-Phillips Chemical Co. LP), Yongfeng Hu (Canadian Light Source, Inc.), Syed Khalid (National Synchrotron Light Source, Brookhaven National Laboratory), Luca Lietti (Polytechnic University of Milan), Aimee Maclennan (Canadian Light Source, Inc.), Jack Selegue (University of Kentucky Department of Chemistry), Ryan Snell (Chevron-Phillips Chemical Co. LP), Branislav Todic (Texas A&M University at Qatar), and Carlo G. Visconti (Polytechnic University of Milan).

The book can be purchased at the following website: https://www.crcpress.com/Fischer-Tropsch-Synthesis-Catalysts-and-Catalysis-Advances-and-Applications/Davis-Occelli/9781466555297.



Graffin Lecturer Discusses "This Ubiqutuos Carbon" at a UK CAER Seminar

clock March 4, 2016 09:58 by author Alice
This ubiqutuos carbon... was an interesting topic presented by Dr. Cristian Contescu, Senior Research Staff, Materials Science and Technology Division at Oak Ridge National Laboratory, at a recent University of Kentucky Center for Applied Energy Research Seminar held on March 2, 2016.



After Stone Age, Bronze Age, and Iron Age, and after the Silicon Age of the informational revolution, the technologies of 21st century are marked by the ubiqutuous presence of various forms of carbon allotropes. For long time, diamond and graphite were the only known carbon allotropes, but that has changed with the serendipous discovery of fullerences, carbon nanotubes, and graphene. Every ten or fifteen years scientists unveil new forms of carbons with new and perplexing properties, while computations suggest that the carbon’s family still has members unknown to us today. At a dramatically accelerated pace, new carbon allotrope forms find their place at the leading edge of scientific and technological innovations. At the same time traditional forms of carbon are being used in new and exciting applications that make our life safer, healthier, and more enjoyable. The 21st century may soon be recognized as the Age of Carbon forms.

This educational talk emphasized the role that carbon, the fourth most abundant element in the Galaxy and the basis of life on Earth, was the engine of most important technological developments throughout the history of civilization. The talk will emphasize carbon’s strong ability, as an element, to generate a variety of allotropic forms and to enter in a multitude of combinations with itself and with many other chemical elements. These properties have placed carbon at the core of numerous inventions that define out civilization, while emerging new technologies open a rich path for value-added products in today’s market. The potential of new (and traditional) carbon allotropes for development of new applications in nanotechnologies and nanocomposites, energy storage and conversion, gas separation, storage and sequestration, health management and drug delivery, defense and national security, aeronautics and astronautics, basic sciences and life sciences is still not fully explored and demands more basic and applied research. Today’s carbon science and technology offers a broad range of opportunities for the young generation of students, engineers and scientists.


UK College of Design Students Tour CAER's Energy Efficient Lab Building

clock March 3, 2016 13:28 by author Alice
UK College of Design Students in the Interior Design area toured the University of Kentucky Center for Applied Energy Research's laboratory 2 - Renewable Energy Lab on March 2, 2016. The students toured the solar and battery areas and heard details about the building's energy efficiency features from Courtney Fisk, UK CAER Assistant Director for Facilities and Operations. Courtney was the engineer that oversaw the construction of lab 2. Eduardo Santillan-Jimenz, UK CAER Biofuels Scientist, presented information/toured the Biofuels labs housed within the building. The CoD students are working on a Sustainability grant jointly received by UK CAER, Colleges of Design and Education to develop a biofuels video game from the board game version created by Dr. Santillian-Jimenz.


UK CAER Ingenuity Featured at E-Day

clock March 1, 2016 09:18 by author David Melanson

UK CAER’s education and outreach missions were on full display on Saturday, February 27 as part of UK’s Engineers Day, or as it is commonly-referred, E-Day. E-Day, a celebration of everything engineering has to offer, is held each year on UK’s engineering complex.


E-Day is an opportunity for school-aged children – from elementary all the way through high school – to learn more about the exciting things engineers and computer scientists do. It also serves as a way to introduce students to experiential activities, including high school and undergraduate research opportunities.


Representing the Center at E-Day this year were Eduardo Santillan-Jimenez and Tristana Duvallet, who were busying answering questions from interested students and parents about what a career in science would look like.

 



CAER Provides Chemistry Demonstrations at SCAPA

clock February 29, 2016 09:25 by author Alice

UK CAER’s Wilson Shafer and Gary Jacobs gave chemistry demonstrations to seventh grade students at Fayette County’s School for the Creative and Performing Arts (SCAPA) of the Bluegrass. The host for the event was Dr. Ashlie Arkwright from Fayette County Schools. Wilson and Gary performed a number of interesting chemical reactions that are used in our everyday lives and showed important links between chemistry and the fine arts. These included combustion and acid-base neutralization (using invisible inks), redox (including plating reactions and showing changes in pigment with oxidation state), and polymerization reactions (used, for example, in making classical guitar strings).



UK CAER Undergraduate Researcher Presents Research at Kentucky State Capitol

clock February 25, 2016 14:48 by author David Melanson

Courtney McKelphin, an undergraduate researcher at the University of Kentucky Center for Applied Energy Research, was one of 29 UK undergraduate researchers selected to showcase their research to the Kentucky state legislature on Thursday, February 25. Read the full story.



UK CAER Algal Research Hitting the Ground in China

clock February 15, 2016 12:05 by author David Melanson

Algae research at the University of Kentucky Center for Applied Energy Research (CAER) is going global.

The Algae and Biofuels Laboratory at UK CAER is partnering with Lianhenghui Investment Company to construct a 5-acre algae production facility in Zhengzhou, China. The facility will feature the Center’s novel photobioreactor technology for growing algae. The algae will be used for the production of nutraceuticals, bioplastics and fuels. The company is also constructing a second, smaller facility in Zhengzhou (2.5 acres), which will employ the same technology to grow algae for the production of nutraceuticals.

Microalgae have attracted considerable interest in recent years as a high-yield renewable feedstock for the production of fuels and chemicals. In addition, algae have been proposed as a means to capture and utilize power plant emissions, since photosynthetic algae can use the CO2 in flue gas as a carbon source.

UK CAER’s Algae and Biofuels group, led by Dr. Mark Crocker, is a worldwide leader in this research. The group has extensive expertise in this area, specializing in photobioreactor design, construction and operation; photobioreactor integration with power plants; and algae cultivation, harvesting and dewatering.

“This is an exciting development for our lab and the next phase of our research,” said Dr. Crocker. “Getting to see our innovations go from the lab to practice at Duke Energy’s East Bend Station in Boone County, Kentucky and now on to an international market is gratifying. We look forward to learning more from our partners at Lianhenghui Investment Company.”

The initial funding for the photobioreactor development was provided by the Kentucky Department of Energy Development and Independence, as part of a project to investigate the potential of algae for the capturing and recycling of power plant CO2 emissions.  After years of research, the lab partnered with Duke Energy’s East Bend Station to install a photobioreactor at that site in late 2012.

“This is an exciting achievement for Mark Crocker and the entire Biofuels group here at CAER,” said Rodney Andrews, Director of UK CAER. “They have been persistent in their efforts to improve the technology, constantly refining their process and improving our understanding of how the biology and engineering systems interact. We look forward to seeing the results of this partnership with Lianhenghui."

In June 2014, the UK CAER licensed its photobioreactor technology to Lianhenghui. Together, UK and Lianhenghui have patented the first and second generation photobioreactor technology in China, and they are in the process of patenting the second generation reactor technology in the United States.

Biofuels – fuels derived from biomass – are promising alternatives to fossil fuels since they are renewable and carbon neutral (the CO2 generated during biofuel use is consumed by plants through photosynthesis, closing the carbon cycle). CAER has considerable experience on the catalytic conversion of different forms of biomass to fuels and chemicals.

For the full story and photos...



UK CAER Hosts Very Successful Ponded Ash Workshop in Tampa, Florida

clock February 12, 2016 16:38 by author Alice
Engineers, consultants, utility representatives and other scientists in the coal ash industry gathered in Tampa, Florida on February 3 and 4th to attend the workshop on “Current Issues in Ponded CCP’s." The University of Kentucky Center for Applied Energy Research (UK CAER) and the American Coal Ash Association (ACAA) co-hosted the 1 1/2 day event that was held in conjunction with ACAA’s annual meeting. Additionally, the Electric Power Research Institute (EPRI) was a workshop sponsor and co-organizer.

Expert speakers from the CAER and industry gave technical presentations to a crowd of 192 attendees. Those presentations included:

  • Nature of Ponds, Sediments, Structure of Ponds - by Dr. Robert Jewell, UK CAER
  • The Recovery and Beneficiation of Ponded Fly Ash - by Dr. Tom Robl, UK CAER
  • Slope Stability Considerations under the CCR Rule - by Mr. John Seymour - Geosyntec
  • Progress Report on Seismic Shear Wall Stabilization of Perimeter Dikes and Loose Sand Foundation by Deep Mixing Method (DMM) - Experiences from Ongoing Construction at TVA's Colbert Ash Pond 4 - by Bill Walton, GEI
  • The New Regulatory Regime - The New Rules Summary - by Mr. John Ward, John Ward, Inc
  • Framework for Evaluating the Relative Impacts of Surface Impoundment Closure Options - by Ms. Ari Lewis, Gradient
  • Groundwater Monitoring and Statistical Analysis Under the CCR Rule - by Mr. Bruce Hensel, EPRI
  • Corrective Action at CCP Ponds - by Ken Ladwig, EPRI
  • In-Situ Stabilization/Solidification of Coal Ash Residuals - by Adam Chwalibog, Arcadis U.S., Inc.
  • North Carolina's Unprecedented Scope, Schedule, and Scrutiny: Insights for the Industry - by Dr. John Daniels, UNCC
  • Pond Closures: How to Avoid "Breaking the Bank" - by Mr. Mark Rokoff, AECOM




The UK CAER’s Environmental and Coal Technologies Group investigates all aspects of coal combustion by-product utilization (flyash). As such, it generates information for the transfer of new ideas to benefit the innovative utilization, handling, storage and disposal of CCBs.

The American Coal Ash Association, established in 1968, is a nonprofit trade association devoted to recycling the materials created when we burn coal to generate electricity. Our members comprise the world's foremost experts on coal ash (fly ash and bottom ash), and boiler slag, flue gas desulfurization gypsum (FGD or "synthetic" gypsum), and other flue gas materials captured by emissions controls.


UK CAER Scientists Publish in CCGP Journal

clock February 12, 2016 13:30 by author Alice
The newest article published in the Coal Combustion and Gasification Products journal is Coal Ash By-Product from Shanxi Province, China, for the Production of Portland-Calcium Sulfoaluminate, written by authors Tristana Y. Duvallet, Thomas L. Robl, and Kevin R. Henke (from UK CAER) as well as Yongmin Zhou, David Harris.

Web Link - Free article download

ABSTRACT: Twenty bulk samples were collected from ponded coal combustion ash in Shanxi Province, China, as part of an investigation of their beneficiation potential. The samples were shipped to the University of Kentucky, where they were chemically analyzed. The samples were highly consistent in chemistry, falling within the ASTM C-618 class F compositional range. The particle size of the ponded ash was relatively coarse, with only, 7% by weight on average, falling below 200 mesh (75mm) particle size. The bulk of the material (80%) was within 50 by 200 mesh (equivalent to 300 by 75mm). X-ray diffraction investigation combined with microscopy indicated that the agglomeration was probably due to the presence of small amounts (i.e.,,3.5%) of gypsum. The utilization potential of the ash was assessed in light of its characteristics and location. The presence of sulfate and relatively high alumina concentration, which averaged, 37%, suggested that it may serve as an important ingredient in the fabrication of a Portland–calcium sulfoaluminate (CSA) hybrid cement. Portland-CSA hybrid clinkers were successfully produced from this ponded ash when mixed with hydrated lime, gypsum, fluorite, and bauxite. The raw mixture was fired at 1250u C for 60 minutes twice (sample D) and consisted of approximately 40% alite (C3S), 21% belite (C2S), 3% ferrite (brownmillerite or C4AF), 32% CSA (ye’elimite, Klein’s compound, or C4A3SO3), and no free lime by weight.

2016 The University of Kentucky Center for Applied Energy Research and the American Coal Ash Association. All rights reserved.

Coal Combustion and Gasification Products is a unique peer-reviewed journal designed specifically to communicate coal ash research and emerging new technologies. CCGP is a joint venture between the University of Kentucky Center for Applied Energy Research (UK CAER) and the American Coal Ash Association (ACAA). The organizations' primary goal is to bring together research that currently is published in disparate sources.

CCGP is an international on-line journal encompassing the science and technology of the production, sustainable utilization, and environmentally-sound handling of the byproducts of coal combustion and gasification. This includes fly ash, bottom ash, boiler slag, gasification residue, and byproducts from coal-fuel blends, flue-gas desulfurization products, and related materials.


Center Featured on UK at the Half

clock January 25, 2016 08:22 by author David Melanson

UK CAER’s story was shared with members of the Big Blue Nation on Saturday. Center Director Rodney Andrews was interviewed for the radio feature, which aired on Saturday, January 23 during the UK men’s basketball game versus Vanderbilt. Listen to the radio interview here: http://uknow.uky.edu/sites/default/files/ukath-2015-16-34_mixdown.mp3.



Seed Projects Starting to Blossom

clock January 13, 2016 11:49 by author David Melanson

The success of the University of Kentucky Center for Applied Energy Research’s seed grant program was on full display Wednesday, as UK CAER investigators presented early-stage research projects to fellow CAER colleagues.

CAER’s seed grant program was created to bridge the divide between internal creative ideas and large government grants and/or industrial funding, with the objective being to develop a process of converting new research concepts into competitive proposals.

The success of the program can best be illustrated by the results. Since January 2013, CAER has invested $430,000 into seed projects. Those same projects have generated more than $940,000 in external funding and seven published papers. In fact, of the five external proposals submitted on behalf of seed projects, all five have received funding.

“The results are pretty obvious,” said Andrews. “We knew that CAER investigators had some novel concepts that simply needed some start-up funding to get off the ground, and this program allowed us to fund those innovative, early-stage ideas. It is exciting to see these concepts grow and receive support from external agencies, as they move into the next phase of discovery.”

On Wednesday, the following projects were spotlighted during the seed grant poster presentations event at CAER. These projects were all funded in 2015.

 

  • Michael Wilson, Stephanie Kesner, and Daniel Mohler - Integrating Algal Based CO2 Utilization and Waste Water Treatment

Photosynthetically grown microalgae have the potential to recycle many waste streams, including CO2 emissions and municipal, agricultural, or industrial waste water.  Samples were obtained from the Lexington Fayette Urban County Government Division of Water Quality to evaluate the suitability of waste water as a nutrient source and habitat to culture microalgae.  Ion chromatography was used to evaluate various waste water streams from the Town Branch wastewater treatment plant and to track nutrient uptake of algae cultures. Although the waste streams sampled did not contain high values of usable nutrients, it’s suitability as an industrial scale habitat was verified.

 

  • Tristana Duvallet and Anne Oberlink - Sulfate-Activated Class C Fly Ash Based Cements

Recent research in the Environmental and Coal Technologies (ECT) group has determined that Wyodak coal source Class C fly ash can be activated through a sulfation mechanism with anhydrite to produce the fly ash equivalent of a “super-sulfated cement.” This constitutes a discovery that is of significance. Concretes and mortars produced with high levels of coal combustion products (CCPs) or supplemental cementitious materials (SCMs), such as fly ash or slag, in place of Portland cement can develop strength by the activation of the alumina and silica phases of the materials using strong alkalis (i.e. alkali activation, aka “geopolymer”). The alkali that is used as the activator is typically sodium or potassium silicate in combination with sodium or potassium hydroxide, and various alkalis, e.g. borates, citrates, sulfonates, etc. Drawbacks to this approach include: erratic setting, either lack of, or very slow setting or flash setting; slow strength development that may require curing at elevated temperatures; rheological problems with the concrete or mortars themselves, i.e. they become “sticky”; worker safety issues since high levels of sodium hydroxide exposure are dangerous; and long-term issues with surface efflorescence. Sulfation activation was thought to be a phenomenon restricted to ground granulated blast furnace slag (GGBFS) cement. The observation that a supersulfated cement can be based entirely on Class C fly ash instead of GGBFS, overcoming the drawbacks of alkali activation, has the potential to lead to a new generation of low energy, low CO2 concretes and mortars.

  • Robert C. Pace - Biomass Fractionation via a Semi-continuous Method: Lignin Extraction with Ionic Liquids

Ionic Liquids (ILs) are highly adaptable organic salts which are liquid at room temperature. As a consequence of these properties, ILs are enormously effective in the dissolution of lignocellulosic biomass.  Given the tremendous interest in the production of renewable fuels and chemicals from lignocellulose, these solvents present a novel pathway toward the fractionation of lignocellulose into its three primary components; cellulose, hemicellulose and lignin. Fractionation of these compounds is necessary for the use of the whole of the biomass, a requirement for cost-effective production from these feedstocks. To date, nearly all biomass fractionation using ILs has been conducted in batch processes. Since continuous extraction systems are often more energy efficient and economical, this project will set out to construct a semi-continuous extraction system which is capable of overcoming the high viscosities of ILs. In order to discern the effects of various functionalities as well as the impact of cation/anion effects, five ILs will be examined as extraction solvents. The products of these fractionation experiments will also be analyzed by various means, including thermogravimetric analysis, pyrolysis-GCMS and gel permeation chromatography.  This work will lead not only to valuable data which can be utilized in publications and future grant proposals, but will also generate an apparatus which is capable of producing unique IL extracted biomaterials which could be sold as commodity products and utilized by students in their own research projects within the BEC group.

  • Chad Risko, Adam Rigby and Karl Thorley, - A Computational, Shape-Based Approach to Crystal Engineering

Organic semiconductors (OSC) are experiencing rapid application growth in consumer electronics, with OSC poised to serve a key role in next generation flexible, conformable, and wearable electronics. However, the reliance on largely Edisonian discovery processes results in significant development and production costs – in terms of personnel, materials, characterization equipment, and time – for new, molecular-based OSCs. High-performance computing, when combined with the tool set and know-how of the synthetic chemist, offers a means to overcome many of these costs. Through a joint collaboration between the Anthony and Risko groups, we are developing an innovative computational approach to determine how the interplay between of molecular shape and explicit chemical functionality drive molecular packing in the solid state, a key determinant of OSC performance. The development of the computational platform will allow for rapid approximations of molecular packing structures, with relevant solutions arriving within days and weeks rather than the months required for synthesis and characterization, along with the ability to screen varied and unusual molecular designs that may otherwise go untried. Through the course of the work, the research team has improved understanding as to how solid-state molecular conformations impact the intermolecular electronic coupling, a key parameter directing charge-carrier transport in these materials. The project introduced a new concept, the disordermer, into the crystal engineering lexicon, and shown how changes in chemical composition can be manifest on crystalline order and the resulting charge-carrier transport properties. The lab has also made considerable headway in terms of developing a model that reveals how adjustments in the overall molecular shape and volume direct solid-state packing. The work has resulted in three peer-reviewed publications (two published and one submitted) and one proposal submitted to the National Science Foundation.

  • Rafael Franca and John Craddock - A New Approach to Novel Zeolite Hollow Fiber Membranes for Dewatering and Enrichment Separations in CO2 Capture Process

Zeolite membrane-based technology for dewatering of aqueous amine-based CO2 sorbents, has the capability to significantly decrease the energy required for CO2 capture from coal-fired power plants. Membrane enabled dewatering of CO2 saturated amine solvent, reduces the thermal energy required by the stripper during solvent regeneration by commensurately reducing the volume of water to be heated. The hollow fiber membrane (HFM) geometry provides high surface area to volume and high permselectivity. These membranes have the potential to increase selectivity and flux in membrane-based dewatering processes when compared to conventional tubular membranes. In this work, we introduced the preparation of a novel, polymer-assisted processing of a Y Zeolite HFM support. The preparation method proposed is based on air-gap solution spinning of a polymer (polyethersulfone (PES)) solution containing highly dispersed mullite particles, followed by thermal treatment to pyrolize the polymer and sinter the mullite particles into an HFM form. It is expected that this new design (HFM) would greatly increase flux and selectivity of Y zeolite membranes for the dewatering of carbon-loaded amine solvents. Preliminary results indicated that mullite based hollow fiber supports did not present enough mechanical resistance after the sintering process. Zeolite Y crystals have been successfully grown on the outside surface of PES hollow fiber supports, however some level of degradation was observed when the support was exposed to the carbon loaded amine solvent. It is not clear if the degradation process affects the porosity of the PES hollow fiber support. Further tests will be conducted with PES hollow fibers to analyze the viability of using PES as a support for Y-zeolite hollow fibers.

  • Christopher Swartz, "Hybrid Redox Flow Battery for Stationary Energy Storage Applications

The capability to store electricity is on track to become an integral component of the future electrical grid. Emerging technologies found in the grid storage portfolio include pumped hydro energy storage, compressed air energy storage, thermal and flywheel energy storage, and various electrochemical energy storage options, including redox flow batteries. Redox flow batteries share many similarities with fuel cells, and are rechargeable, modular battery systems where energy storage and power performance can be decoupled from one another due to the battery architecture. The all-vanadium redox flow battery represents the current state-of-the-art in flow battery technology, and numerous demonstration units have been installed worldwide, ranging from kW, kWh to MW, MWh capabilities. The relatively high cost of these systems has prevented widespread adoption of flow battery technology, and new flow battery systems featuring lower cost chemistries and ion exchange membranes (when compared to vanadium and Nafion®, respectively) remain highly attractive candidates to move flow batteries along on a forward trajectory to the commercial marketplace. The Electrochemical Power Sources Group proposes to develop a low-cost hybrid redox flow battery as an alternative to the all-vanadium system, based on aqueous iron and zinc electrochemistry. The cathode will feature plating and stripping of Zn metal during cell charge and discharge. The anode will feature the Fe2+/Fe3+ redox couple, with the addition of various ligands or chelating agents which will bind to iron, and lead to higher operating cell voltage and energy density.

For the full story and photos...



UK CAER, ACAA and EPRI to Host Winter Workshop

clock January 6, 2016 15:19 by author David Melanson

The University of Kentucky Center for Applied Energy Research (UK CAER), the American Coal Ash Association (ACAA) and the Electric Power Research Institute (EPRI) are co-sponsoring a Workshop on Current Issues in Ponded Coal Combustion Products (CCPs) February 3-4 in Tampa, Florida.

The workshop will be held immediately following the ACAA 2016 Winter Meeting, which will be held at the Hilton Downtown Tampa February 2-3.

Registration for both the winter meeting and workshop is now available online. For more information and to register for this exciting educational and networking opportunity, visit the following website: http://www.worldofcoalash.org/ash/.



UK CAER Scientists Published in Shotcrete

clock January 4, 2016 08:29 by author David Melanson

A pair of research scientists from the UK Center for Applied Energy Research’s (UK CAER) environmental coal technologies group had an article published in the Fall 2015 edition of Shotcrete magazine. Anne Oberlink and Robert Jewell penned the piece entitled “Rapidly Deployable Shotcrete System for the Structural Stabilization of Shock-Damaged Structures.” You can read the entire article here.



UK CAER Receives Federal Rare Earth Element Research Funding

clock December 15, 2015 13:54 by author David Melanson

Several UK CAER colleagues received funding on three of 10 U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) projects. NETL funded this series of projects as part of their Recovery of Rare Earth Elements from Coal and Coal Byproducts program. The selected research projects will further program goals by focusing on the development of cost-effective and environmentally benign approaches for the recovery of rare earth elements (REEs) from domestic coal and coal byproducts. Read the story.